Процесс Фишера — Тропша – это… Что такое Процесс Фишера — Тропша?

Как сделать бензин из угля

Особенности и перспективы

Уже в середине прошлого века в России и ряде европейских стран начали перегонять твердые углеводороды в жидкое состояние и использовать как альтернативный источник энергии. Самое большое внимание развитию этой технологии уделяется в азиатских странах, где преобладают месторождения именно твердых ископаемых. Китай, определив в своей стране процесс преобразования «черного золота» как приоритетное направление, уже достиг серьезных объемов производства.

Жидкое топливо из угля: при определенных условиях в жидкую форму переходит почти весь каменный угольЖидкое топливо из угля: при определенных условиях в жидкую форму переходит почти весь каменный уголь

Если говорить о каменных углях, то в настоящее время для производства синтетического жидкого топлива используют марки Д, Г, ОС, СС, Т и А. Остальные чаще сжигаются для получении электричества (ТЭС). Наиболее перспективны для переработки бурые угли – их запасы значительны, а из-за небольшой теплотворной способности для отопления или производства электроэнергии покупают их неохотно. Если же в непосредственной близости от месторождения расположить мини завод, то транспортные расходы можно свести к минимуму. Перегонять можно самые мелкие и даже пылеобразные фракции. Ведь для  достижения лучшего результата сырье специально измельчают в пыль. Так что затраты на сырье также незначительны: эти сорта имеют низкую стоимость.

Самые серьезные вложения потребуются на строительство (аренду) помещения и приобретение оборудования. Но что хорошо: современные установки требуют минимального вмешательства человека.  В котел засыпаются исходные материалы, через некоторое время на выходе появляется продукция.

В зависимости от состава исходного сырья и особенностей проведения процесса можно получить: бензин, керосин, солярку, мазут. Выделяемые в процессе газы могут идти на обеспечение требуемой температуры гидрогенизации (сжижения) или на другие нужды. Так что затраты на электроэнергию тоже невелики. Неплохим примером мини завода по переработке бурого угля в жидкое топливо отечественного производства является установка пиролиза «Прометей».

n1.doc

СОДЕРЖИНИЕ

Введение. 1

1 Физико-химические основы 2

2 Обзор способов газификации угля 5

Автотермические процессы 6

Газификация в стационарном слое. Процесс Lurgi. 6

Аллотермические процессы 13

3 Современные разработки технологических схем газификации угля 15

Комплекс получения синтез-газа способом газификации твердого топлива мощностью 25ч30 МВт-эл. 17

Варианты самодельного бензина

Производство топлива для транспортных средств — процесс сложный и высокотехнологичный, требующий больших затрат, начиная от добычи нефти до ее переработки и получения конечного продукта. Но из-за постоянного роста цен на горючее и стремления удешевить содержание своего автомобиля народные умельцы изыскивают возможность произвести продукт, альтернативу топливу, которое с помощью различных устройств умудряются получить. Используя в качестве одного из компонентов различные виды сырья и материалов, производят следующие виды топлива:

  1. Метанол или метиловый спирт. Этот продукт получается при соединении газа пропан-бутан и водяного пара.
  2. Этанол. При производстве этанола применяют сельскохозяйственные культуры (кукуруза, просо и пр.).
  3. Биодизельное. Производят с применением растительного масла и животных жиров.
  4. Бензин. Для производства конечного продукта применяют старые автошины, отходы резины и резинотехнических изделий.
  5. Бензин. Производят кустарным способом из сырой нефти.
  6. Бензин. Путем термической обработки угля.
  7. Топливо. Методом газификации.
  8. Бензин. Производят путем переработки бытового мусора, бытовых отходов, пластика и пр.

И все же, как сделать бензин в домашних условиях, необходимо рассмотреть эти способы.

Научные основы процесса

Синтез Фишера—Тропша можно рассматривать как восстановительную олигомеризацию оксида углерода:

nCO+(2n+1)H2→CnH2n+2+nH2O{displaystyle {mathsf {nCO+(2n+1)H_{2}rightarrow C_{n}H_{2n+2}+nH_{2}O}}}{mathsf  {nCO+(2n+1)H_{2}rightarrow C_{n}H_{{2n+2}}+nH_{2}O}}nCO+2nH2→CnH2n+nH2O{displaystyle {mathsf {nCO+2nH_{2}rightarrow C_{n}H_{2n}+nH_{2}O}}}{mathsf  {nCO+2nH_{2}rightarrow C_{n}H_{{2n}}+nH_{2}O}}

Обе реакции экзотермичны со значительным тепловым эффектом ~165 кДж/моль по монооксиду углерода (СО).

Катализаторами служат переходные металлы VIII группы: наиболее активен рутений (Ru), затем кобальт (Co), железо (Fe), никель (Ni). Для увеличения реакционной каталитической поверхности их часто наносят на пористые инертные носители, такие, например, как силикагель и глинозём. В промышленности нашли применение только Fe и Co.[2] Рутений слишком дорог, кроме того, его запасы на Земле слишком малы для использования в качестве катализатора в многотоннажных процессах. На никелевых катализаторах при атмосферном давлении образуется в основном метан (n=1), при повышении же давления в реакторе образуется летучий карбонил никеля, который уносится из реактора с продуктами реакции.

Побочными реакциями синтеза углеводородов из СО и Н2 являются:

  • гидрирование оксида углерода до метана:

CO+3H2→CH4+H2O{displaystyle {mathsf {CO+3H_{2}rightarrow CH_{4}+H_{2}O}}}{mathsf  {CO+3H_{2}rightarrow CH_{4}+H_{2}O}} + 214 кДж/моль

  • реакция Белла—Будуара (диспропорционирование СО):

2CO→CO2+C{displaystyle {mathsf {2COrightarrow CO_{2}+C}}}{mathsf  {2COrightarrow CO_{2}+C}}

  • химическое равновесие в водяном газе:

CO+H2O⇄CO2+H2{displaystyle {mathsf {CO+H_{2}Orightleftarrows CO_{2}+H_{2}}}}{mathsf  {CO+H_{2}Orightleftarrows CO_{2}+H_{2}}}

Последняя реакция имеет особое значение для катализаторов на основе железа, на кобальтовом катализаторе она почти не протекает. На железных катализаторах, кроме того, в значительных количествах образуются кислородсодержащие органические соединения — спирты и карбоновые кислоты.

Типичными условиями проведения процесса являются: давление от 1 атм (для Co катализаторов) до 30 атм, температура 190౼240 °C (низкотемпературный вариант синтеза, для Co и Fe катализаторов) или 320౼350 °C (высокотемпературный вариант, для Fe).

Механизм реакции, несмотря на десятилетия его изучения, в деталях до сих пор остаётся неясен. Впрочем, эта слабая изученность реакций типична для гетерогенного катализа.

Термодинамические закономерности для продуктов синтеза Фишера—Тропша следующие.

  1. Возможно образование из СО и H2 углеводородов любой молекулярной массы, вида и строения кроме ацетилена, образование которого энергетически невыгодно.
  2. Вероятность образования углеводородов уменьшается в ряду: метан > другие алканы > алкены. Вероятность образования нормальных алканов снижается, а нормальных алкенов — повышается с увеличением длины цепи.
  3. Повышение общего давления в системе способствует образованию более тяжёлых продуктов, а увеличение парциального давления водорода в синтез-газе благоприятствует образованию алканов.

Реальный состав продуктов синтеза углеводородов из СО и Н2 существенно отличается от равновесного. В большинстве случаев распределение продуктов по молекулярной массе в стационарных условиях описывается формулой p(n) = n(1-α)²αn-1, где p(n) — массовая доля углеводорода с углеродным номером n, α = k1/(k1+k2), k1, k2 — константы скорости роста и обрыва цепи соответственно. Это так называемое распределение Андерсона—Шульца—Флори (ASF distribution). Метан (n=1) всегда присутствует в большем количестве, чем предписывается распределением ASF, поскольку образуется независимо по реакции прямого гидрирования. Величина α снижается с ростом температуры и, как правило, возрастает с ростом давления. Если в реакции образуются продукты разных гомологических рядов (парафины, олефины, спирты), то распределение для каждого из них может иметь свою величину α. Распределение ASF накладывает ограничения на максимальную селективность по любому углеводороду или узкой фракции. Это вторая проблема после проблемы отведения тепла реакции в синтезе Фишера—Тропша.

Синтезы на основе оксида углерода и водорода[3]

Процесс Катализатор Носитель катализатора Температура, °С Давление, МПа Продукт
Синтез метана Ni ThO2 или MgO 250౼500 0,1 Метан
Синтез высших углеводородов Co, Ni ThO2, MgO, ZrO2 150౼200 0,1౼1 Смесь парафинов и олефинов с длиной углеродной цепи С1౼С100
Синтез высших углеводородов и кислородсодержащих соединений Fe Cu, NaOH (KOH), Al2O3, SiO2 200౼230 0,1౼3 Преимущественно парафины и олефины в смеси с кислородсодержащими соединениями
Синтез парафинов Со TiO2, ZrO2, ThO2, MgO 190౼200 1 Преимущественно твёрдые парафины с температурой плавления 70౼98°С
Ru MgO 180౼200 10౼100 Высокомолекулярные парафины
Изосинтез ZrO2, ThO2, Al2O3 K2CO3 400౼450 10 Парафины и олефины преимущественно изостроения
ThO2 350౼500 10౼100 Изопарафины и ароматические углеводороды
Синтез метанола ZnO, Cr2O3, CuO 200౼400 5౼30 Метанол
Синтез высших спиртов Fe, Fe-Cr, Zn-Cr Al2O3, NaOH 180౼220,

380౼490

1౼3, 15౼25 Метанол и высшие спирты

Нефть

Если и далее разбираться в том, что получают из угля и нефти, то стоит сказать и о дизельной фракции нефтеперегонки, которая обычно служит топливом для дизельных двигателей. В состав мазута входят высококипящие углеводороды. Посредством перегонки под уменьшенным давлением из мазута обычно получают различные масла смазочного назначения. Остаток, который имеется после обработки мазута, принято называть гудроном. Из него получают такое вещество, как битум. Данные продукты предназначены для использования в дорожном строительстве. Мазут часто используется и в качестве котельного топлива.

Лучше, чем в природе

Еще в конце прошлого века Н. Д. Зелинский обратил внимание на разницу в строении молекул нефти. Большинство молекул высококачественной бакинской нефти представляет собой замкнутые кольца углеродных атомов, к которым по бокам присоединены атомы водорода. От такого циклического строения молекул и зависит прежде всего высокое качество топлива. Грозненская нефть содержит меньше нафтенов — циклических углеводородов. В ней преобладают молекулы метанового ряда, растянутые в виде цепочек атомов. Бензин, полученный из грозненской нефти, при сжатии в цилиндрах двигателей, детонировал, самопроизвольно взрывался гораздо раньше того момента, когда между электродами свечи проскакивала запальная искра.

Много хлопот доставило это явление и химикам и моторостроителям, которые всегда стремились увеличить мощность моторов. Мощность и коэффициент полезного действия двигателя зависит прежде всего от того, насколько сильно поршни в цилиндре сжимают горючую смесь. Степень сжатия (то-есть отношение объема всего цилиндра к объему предельно сжатой в цилиндре горючей смеси) – одна из важнейших характеристик двигателя. Чем больше степень сжатия, тем мощнее и экономичнее двигатель. Если, например, повысить степень сжатия у автомобильного мотора с 5,25 до 10,3, то автомобиль, двигаясь со скоростью 40 км/час, будет расходовать горючего вдвое меньше и пройдет на одном баке бензина вдвое большее расстояние.

Самолет, у которого степень сжатия в цилиндрах увеличена, взлетает с меньшего разбега, быстрее поднимается на большую высоту, поднимает больше груза, летит дальше и расходует меньше бензина.

Но вот беда: пары обычного бензина не выдерживают большого сжатия и детонируют. Двигатель быстро перегревается, начинает стучать, словно вот-вот развалится. Мощность его резко падает.

При детонаций прогорают поршневые кольца и днище поршня, разрушаются подшипники.

Детонация — смертельный враг мотора. Много сил приложили ученые, чтобы одолеть его. Они стали подбирать для двигателей бензины с высокими антидетонационными свойствами.

Эти свойства горючего оценивают по так называемому октановому числу. Если говорят, что октановое число горючего — 60, это значит, что его детонационные свойства такие же, как у смеси, содержащей 60% изооктана и 40% гептана. Эти два вещества были взяты за эталон не случайно: изооктан очень хорошо противостоит детонации (его октановое число поэтому было приравнено к 100), а гептан, наоборот, детонирует легче всех других жидких углеводородов (его октановое число приняли за 0).

Получилась своеобразная шкала, по которой можно узнать, как детонирует, высок ли качеством тот или другой сорт бензина.

Чем выше октановое число бензина, тем сильнее можно сжимать в цилиндрах горючую смесь, не опасаясь детонации, тем мощнее и экономичнее двигатель. Первое время самолетные двигатели работали на бензине с октановым числом 50 —55. Использование в авиации бензина с октановым числом 87 позволило повысить мощность моторов на 30—35%, Появление 100-октанового бензина помогло поднять мощность двигателей еще на 15 – 30%. Другими словами современные двигатели стали почти вдвое мощнее, чем «старинные» моторы с таким нее объемом цилиндров.

Казалось бы, качества 100-октановото бензина — это предел, установленный самой природой. Но этот предел, как и немало других, сумела перешагнуть наука, вооруженная передовой техникой. Современные самолеты летают на бензине с октановым числом намного выше 100. Нет в мире нефти, в которой бы содержался бензин столь высокого качества. Такой бензин можно получить лишь искусственным путем — путем синтеза.

Синтез углеводородов давно был заманчивой целью для многих поколений химиков. Академик Н. Д. Зелинский в 1931 году писал: «Когда химик знакомится со строением нефтяных углеводородов и изучает их свойства, он не может не удивляться, насколько легко природа создала эти удивительные формы, которые так трудно приготовить синтетически».

В наши дни высококачественное жидкое топливо получают из низкокачественных бензинов и газов путем перестройки прямых цепочек в ветвистые и кольчатые структуры.

Как протекает пиролиз?

В первую очередь всегда необходимо заботиться о технике безопасности. Помните – ее правила пишутся кровью тех, кто их игнорировал. Также необходимо обеспокоиться окружающей средой. Пиролиз – это перегонный процесс, что идет с пластиком без доступа кислорода и под действием температуры. Что для этого необходимо сделать? Пластик помещается в емкость, которая затем нагревается. Во время этого процесса выделяется газ. Дальше по трубке он поднимается к холодильнику. Происходит конденсация. Газ превращается в жидкость, а именно – топливо. Именно так работает установка по производству бензина из мусора. Так же как и на промышленных заводах, подобным образом можно получать несколько фракций. Это бензин, дизельное топливо, сорбент и что-то похожее на мазут.

Как сделать бензина из газа

Для производства бензина из газа используют оборудование, сделанное кустарным способом, но компактное, небольших размеров и малого веса, изготовленное из металла или нержавейки. Принцип работы оборудования заключается в следующем:

  1. Газ пропан-бутан и вода заполняют сосуд-смеситель, где происходит нагрев и смешение паров воды с газом. Температура внутри смесителя составляет +100…+120ºС.
  2. Смешанный газ подают в герметичную емкость Р1 (реактор), который заполнен катализатором (стружка из никеля — 25% и алюминия — 75%), где под воздействием температуры (+500ºС и выше) образуется синтетический газ.
  3. Из емкости Р1 синтетический газ подают в холодильник, где охлаждают до +30…+40ºС.
  4. Синтетический газ под давлением подают в герметическую емкость Р2 с катализатором (стружка меди — 80% и цинка -20%), где образуются пары синтетического бензина. При этом температура в емкости Р2 не должна быть выше 270ºС.
  5. Из емкости Р2 пары синтетического горючего подают в холодильную камеру, где он, охлаждаясь, конденсируется.
  6. Конденсат синтетического бензина и газ, не растворившийся в воде, из холодильной камеры поступают в конденсатор, откуда сливают синтетический продукт, а газ отправляют на повторную переработку.

Изготовление бензина из автошин

Заняться добычей топлива из резиновых покрышек выгодно и увлекательно. Потребуется 3 металлических бочки с крышками, доменная печь (источник тепла), дистиллятор, сырье (отходы).

Этапы:

  • разрезать резину на мелкие куски;
  • взять огнеупорную емкость, подсоединить жаропрочную трубку, погрузить в нее приготовленное сырье;
  • отвести конец трубки во второй сосуд, у которого 2 трубки (для отвода газов и приема жидкого топлива);
  • заполнить водой третий сосуд в качестве конденсатора;
  • у крышки от сосуда с наличием 2-ух трубок первый конец расположить в 1-2 см;
  • соединить трубку конденсатора с трубкой отвода газов;
  • подвести под первый сосуд вторую трубку конденсатора, подсоединить к газовой горелке;
  • трубку от первого сосуда поместить в трубу наибольшего диаметра, т.к. через нее будет течь вода для охлаждения;
  • зажечь основную горелку, чтобы стала течь вода в контур охлаждения, а резина – превращалась в пар.

При прохождении через трубу газ будет остужаться, стекать во второй сосуд уже в виде конденсата, поступать через отводную трубку на дно конденсатора.

Когда в первом сосуде резина закончится, то стоит отключить воду и горелку.

Конечно, из автошин качественного горючего не получить. Но для заправки бензопилы либо обогрева помещения вполне подойдет сделанный бензин.

Автопокрышки

Внимание! Нельзя применять метод в закрытых комнатах, условиях квартиры или частного дома. В процессе будут подниматься в воздух дым и гарь.

Источники

  1. http://www.fe.doe.gov/aboutus/history/syntheticfuels_history.html
  2. 1 2 3 Big Coal Tries to Recruit Military to Kindle a Market. The Wall Street Journal (11 сентября 2007). Проверено 17 ноября 2007.

Wikimedia Foundation. 2010.

Переработка отходов в топливо в России

В январе 2019 президент страны В. Путин подписал указ о создании компании «Российский экологический оператор», которая станет единым мусорным оператором страны в форме публично-правовой компании (ППК); функции учредителя будет осуществлять Минприроды. Оператор будет заниматься госпрограммами по обращению с отходами и привлекать инвесторов для проектов по их утилизации.

Инновации

Отходоперерабатывающие комплексы:
Впервые в рамках отечественных исследований поставлена задача (2011 г.) объединить разрозненные передовые разработки по многим отраслям промышленности.
Будут разработаны несколько вариантов экологически чистых, высокотехнологичных, конкурентоспособных на мировом рынке отходоперерабатывающих комплексов.Оптимизация сырьевых, тепловых, газовых потоков обеспечит максимальное получение жидких топливных фракций и стройматериалов — без каких-либо технологических отходов, кроме сбросных каталитически очищенных газов.
В результате переработке будет выпускаться рентабельная продукция: топливо, присадки, строительные материалы.

На 1-м этапе предполагается комплектация экспериментальной линии для проведения исследований, испытаний, сертификации и патентования.
Данная работа будет проводиться совместно с Фондом «Сколково», участником которого является компания «Русэкойл».

Планируется строительство мобильных или стационарных перерабатывающих комплексов в составе 1-5 однотипных линий с годовым объёмом переработки 50-250 тыс. тонн подготовленных ТБО (вновь образуемых и полигонного захоронения), «хвостов» сортировки, иловых осадков, торфа, углешламов, деревоотходов и другой органики.
В результате переработке будет выпускать товарной продукция:

  • дизельное топливо
  • химпродукция: (бензол, толуол и нефрас или объединённая фракция БТК),
  • цемент,
  • газопенобетон.

См. также

  • Альтернативное автомобильное топливо
  • Синтетический природный газ
  • Экономика метанола — гипотетическая энергетическая экономика будущего, при которой ископаемое топливо будет заменено метанолом.
  • Сухая перегонка
  • GTL (англ. Gas-to-liquids — газ в жидкости) — процесс преобразования природного газа в высококачественные, не содержащие серу моторные топлива и другие (более тяжёлые) углеводородные продукты.
  • Гидролизное производство
  • Биотопливо
  • Глобальная энергия
  • Солнечная печь — представляет собой простейшее устройство для использования солнечного света для приготовления пищи без использования топлива или электроэнергии

Изготовление автомобильного топлива дома. Можно ли это?

Чуть-чуть про технологию создания этанола (этилового спирта) и биодизельного топлива дома. ОЗНАКОМИТЕЛЬНАЯ Публикация. НЕ РУКОВОДСТВО К ДЕЙСТВИЮ!

Вопрос: Можно ли выполнить горючее для моего автомобиля дома?

Просматривая современные реалити-шоу инстинктивно задался вопросом, можно ли в реальности своими силами дома выполнить горючее для собственного автомобиля? Понимаю, что реальный бензин выполнить в домашних условиях невозможно, но можно ли получить какие-нибудь производные от него или остальной вид топлива? Ездят же машины на дровах или на воде. Какой вид топлива для автомобилей возможно выполнить своими руками?

Ответ:

Если вы в поисках альтернативное горючее или вы проводите свое время в раздумьях о разных апокалиптических сценариях, существует только два по настоящему рабочих варианта, которые совместимы с системами двигателей, которые мы устанавливаем на наших легковых и грузовиках , этанол (одна из наиболее подходящих замен бензину) и биодизель (исходя из этого заменяет ДТ). Два варианта могут применяться для замещения промышленного топлива. Причем биодизель разрешается заливать в бачок привычного двигателя на дизеле почти что без каких-то значительных перемен. Этиловый спирт перемешивается в конкретных пропорциях с бензином, от 10 до 85%. Внимание! Не все бензиновые ДВС могут работать на такой смеси.

Однако выполнить два названных выше помощника обычного топлива не так уж легко. Перед тем как пробовать делать этанол и биодизель дома, понадобится изучение профессиональной литературы, закупки (или постройки) оборудования, создание работающей системы способной делать нужное кол-во топлива необходимого качества. Разумеется нужно помнить про безопасность и не надо пренебрегать изучением законодательства страны, в которой вы находитесь. Действительно возможно, что производство некоторых объемов суррогатного топлива может быть незаконно.

И если вы даже поизучайте все нюансы производства, рассчитывать на доступный продукт навряд ли стоит (если только нет у вас гектара под засев для культур из которых можно добыть спирт), компоненты высокооктанового зелья также влетят в копеечку и тем дороже будет, чем меньший опт вы закажите.

Не обращая внимания на все трудности с изучением новой технологии производства, покупки очень дорогого сырья, сама по себе методика создания топлива неимоверно проста.

Гипотезы происхождения нефти

Точное происхождение нефти до сих пор не установлено. Нефтеобразование это продолжительный процесс накопления нефти в земной коре. Существует две основные теории, на основании которых ученые пытаются понять, откуда именно в недрах планеты берется нефть. Согласно первой, она имеет органическое (биогенное) происхождение, а согласно второй – неорганическое (абиогенное). Большинство фактов указывают на преимущество первой теории. Также поиски и добыча нефти строятся на этой концепции.

Неорганическое происхождение нефти

Сторонники абиогенной теории настаивают на том, что нефть имеет минеральное происхождение. Другими словами, она постепенно накапливалась на большой глубине из различных элементов неорганического типа. Процесс образования жидкости связан с высокими температурами, давлением и химическими процессами. Как вариант – нефть появилась из глубинного метана, который, в свою очередь, выработался из мантии Земли.

Неорганическое происхождение нефти

Последователи данной теории уверены, не стоит переживать по поводу того, что полезное ископаемое скоро исчерпается. По их мнению, нефтеобразование продолжается, причем это происходит быстрее, чем человек ее добывает и использует. Однако теория неорганического происхождения нефти имеет слабую доказательную базу. Например, исследователям не удается на ее основании обнаружить новые залежи ископаемого.

Органическое происхождение нефти

Теория биогенного происхождения нефти основывается на том, что жидкость появилась благодаря постепенной переработке органических веществ. В частности на протяжении многочисленных геологических эпох происходило скопление остатков водорослей, зоопланктона, различных живых организмов.

В особенности такие скопления образовывались на дне водоемов, поскольку большая часть планеты была покрыта водой. Постепенно остатки живых организмов и прочих элементов накапливались на дне в совокупности с песком, илом. Так как масса этих отложений увеличивалась, они опускались все глубже – возрастало давление и температура. Затем начали появляться углеводороды. Этому поспособствовали бактерии, которые могут существовать без воздуха.

В дальнейшем органические вещества преобразовывались в результате химических процессов. Это очень долгие и сложные процессы, которые занимают миллионы лет. Необходимо от 50 до 350 миллионов лет, чтобы появилась нефть, согласно биогенной концепции.

Интересный факт: наряду с современной стоимостью бензина удивителен тот факт, что когда-то его считали бесполезным, а поэтому практически бесплатным. Когда спросом пользовался керосин, бензин считался лишь побочным продуктом его получения в ходе обработки нефти. Зачастую его просто сливали в водоемы в огромных количествах.

Происхождение нефти имеет две теории – биогенную и абиогенную. Большинство исследователей склоняется к биогенной концепции, согласно которой нефть образовалась благодаря органическим веществам. Эти процессы длятся на протяжении миллионов лет. Остатки живых организмов, водорослей постепенно накапливались на дне водоемов. Там они смешивались с илом, новыми органическими веществами и образовывали огромные массы. Под действием бактерий, высокой температуры и давления, химических процессов на большой глубине образовались углеводороды, а в дальнейшем – маслянистая жидкость.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...